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ABSTRACT

We propose Knowledge-guided Genetic Improvement as a
combination of Grammar-guided Genetic Programming with
Tree-based Genetic Programming. Instead of utilizing a gram-
mar directly, an operator graph based on that grammar is
created, that is responsible for producing abstract syntax
trees. Each operator contains knowledge about the grammar
symbol it represents and returns only trees valid according
to user-defined restrictions such as depth, complexity and
approximated run-time performance.

The expected benefits are a search space that excludes
invalid individuals in an evolutionary run, ensuing a reduced
overhead to evaluate invalid solutions and improving overall
quality of the explored search space. The operator graph
supports improvements based on previously run experiments
and extensions towards further non-functional features.
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1 INTRODUCTION

We propose a combination of Tree-based Genetic Program-
ming with Grammar-guided Genetic Programming to be
used in Genetic Improvement (GI) by restricting the search
space with knowledge about non-functional features of the
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programming or language being used. Knowledge is defined
as measurement of non-functional features such as branch
complexity, run-time performance or code size, as well as
the relations (if - condition - then - else) and required order
between concepts of a language (memory allocation - write -
read sequences).

Grammar-guided Genetic Programming (GGGP) is primar-
ily directed towards improving the original crossover operator
designed by Koza [4] to only consider crossover points that
are syntactically correct according to a provided grammar [5].
Tree Genetic Programming (TGP) utilizes a tree structure,
often an Abstract Syntax Tree (AST), as a representation
for its individuals. The AST representation enables the uti-
lization of useful operators. One example is the homologous
crossover [1]. GGGP and TGP have also been previously used
in combination resulting in Tree-adjunct Grammar Guided
Genetic Programming (T3GP) [2, 3], combining the advan-
tages of both approaches, utilizing the tree representation
for the operators enriched with the syntactic information
available from the grammar.

Our work proposes the combination of GGGP and TGP in
a different way, turning the grammar itself into an operator
graph that is both responsible for selection and creation of
AST individuals, which remains the representation choice for
individuals in the population. These individuals will always
be generated in the valid non-functional search space of the
GI experiment, such as maximal run-time performance, depth
or code size. The operator graph can be utilized in all three
major genetic operators — create, crossover, mutate — and
can be modified during and after running GI experiments
to further restrict the search space and improve the success
rate of created trees. Our approach, unlike GGGP which
uses context free grammars, can also utilize the context of
individuals to improve individual creation even further.

2 METHODS

We propose an operator graph where every single construct
in a grammar has a corresponding operator (see Figure 1).
Starting from an root operator, which links to all operators,
every operator maps to either the root operator in case no
restrictions are defined, or alternatively maps to a specialized
operator subgraph restricting its use. In the create and mutate
operations the root operator is responsible for selecting only
such operators that will create valid nodes according to
user-defined restrictions such as a subtree valid at a specific
position in a function. Crossover uses the operator graph for
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Figure 1: Operator graph. Nodes (grey) represent
concepts in a language and contain knowledge about
these concepts (white). They contain edges to child
nodes.

selection of all valid subtrees in tree A that can replace a
selected crossover point in tree B.

Knowledge is encoded in each operator and the edges be-
tween the operators. Whenever a new individual is created
using an operator, the operator will add its minimal values to
a request (ex. minimal depth) and ask the operators at each
child edge (see Figure 1) if they can create a valid subtree.
Only valid child edges (maximum depth not exceeded) can
then be selected to create an individual. A selected child oper-
ator will repeat that process with its own children. These in-
dividuals will always be generated in the valid non-functional
search space of the GI experiment, such as complexity accord-
ing to McCabe[6], maximal assumed run-time performance,
depth or code size. To measure the assumed run-time per-
formance each operator is assigned an assumed weight. The
assignment happens by benchmarking every concept in the
grammar. For if branches an assertion is taken which branch
is likelier to be selected. For loops an assertion is taken how
often the loop is repeated. While this does not return an
accurate measure, due to compiler optimizations reducing the
runtime below the assumed performance, it does represent a
valid maximum. These assumptions can be updated to real
measurements when a generated individual is tested.

An unmanaged operator graph will reference from the root
operator to each concept in the grammar. Each concept in
turn will reference the root operator (Figure 1: then branch,
else branch, body). To reduce incorrect individuals the edges
in the operator graph can be pruned or redirected. For exam-
ple, in Figure 1 the while loop condition edge excludes any
literal node (int, double, char) from being used as this would
result in endless loops or dead code that is never called.

Each node can also contain additional business logic. For
example, read operation nodes check if there is a correspond-
ing write operation to the same Stack/Heap field by another
node in the AST. This prevents individuals failing their exe-
cution due to data access violations.

3 PROPOSED BENEFITS

Our approach increases the percentage of valid generated
trees in an evolutionary search. The primary reason for this
is the knowledge contained in the operator graph concerning
the language semantics, such as needed allocate-write-read
sequences. This allows the restriction of read operations only
on validly initialized variables. The application of knowledge
about non-functional features such as the assumed run-time
performance, prevents the generation of individuals that will
not represent an improvement in the non-functional domain.

Another promising area is the reduction of invalid AST
solutions occurring during compile time, such as incorrect
function calls, array index violations and endless-loops. This
is achieved by pruning or redirecting edges between nodes
in the operator graph, and can happen in preparation of,
or during a GI experiment using the operator graph. For
example, in the domain of endless loops, excluding the option
of literal values in the condition of loops reduces the amount of
individuals that have to be aborted due to endless execution.

The primary drawback of knowledge-guided genetic im-
provement is the amount of work required to provide that
knowledge, such as creating benchmarking operations for the
assumed run-time performance or static analysis to determine
branching complexity. If the knowledge in the operator graph
is incorrect it presents a threat to validity for conducted GI
experiments.

4 CONCLUSION AND FUTURE WORK

Utilizing an operator graph to create individuals in GI runs
is promising, because it allows restricting the search space to
manageable levels. It improves the amount of valid abstract
syntax trees generated, and also shortens the time required to
find improvements, as a larger percentage of valid solutions
will be explored.

The next step with this approach is to test operator graphs
on problems described in literature to compare the quality
of the population and its diversity to other approaches.
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